Exploratory Analysis of Automated Vehicle Crashes Using an NLP Pipeline

Author:

Sharma Anjnesh1ORCID,Du Na1

Affiliation:

1. School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

This study utilized a recently released crash dataset of Level 3 automated vehicles (AVs) made publicly available by the National Highway Traffic Safety Administration (NHTSA). The primary objective was to investigate various crash types and identify factors that influence crash severity. To achieve this, we employed a lightweight Natural Language Processing (NLP) pipeline to automatically extract relevant information from crash narratives and categorized the crashes into 15 distinct types. By analyzing the dependency triples derived from the crash narrative using the Stanford CoreNLP library, we determined the similarity between each narrative and the predefined categories. Our findings highlight safety-critical crash scenarios based on real-world data encompassing diverse operational design domains (ODDs), revealing a statistically significant impact of lighting conditions on crash severity. These results contribute to a better understanding of AV crashes and provide valuable insights to enhance the safe testing, integration, and development of AVs in real-world environments.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3