Dynamic finite element analysis of implants for femoral neck fractures simulating walking

Author:

Noda Mitsuaki1,Nakamura Yukiko2,Adachi Kazuhiko3,Saegusa Yasuhiro1,Takahashi Masayasu1

Affiliation:

1. Department of Orthopedics, Konan Hospital, Kobe, Japan

2. Kobe University Graduate School of Engineering, Kobe, Japan

3. Department of Mechanical Engineering, Chubu University, Kasugai, Japan

Abstract

Background: To examine postoperative complications for osteosynthesizing femoral neck fractures (Pauwels III), biomechanical analysis should be conducted under dynamic conditions simulating for walking, not static conditions. Among the two main aims of this study, one is to pioneer the technique of dynamic finite element (FE) analysis, and the other is to compare stress distribution between two implants during walking. Materials and Methods: First, we performed an inverse dynamic analysis with optimization method using a musculoskeletal model to calculate the inter-segmental and muscular forces during walking. Second, three FE models were prepared: (I) intact hip joint, (II) fractures treated with two Hansson pins (HP), and (III) fractures with Dual SC Screws (DSCS) maintaining an angular stability. The direction and magnitude of the loadings varied continuously. Stress distribution during the walking was evaluated by using a dynamic explicit method. We examined the time-dependent von Mises stresses at two representative spots: medial cortex at the femoral neck fracture site and lateral pin (presumed) insertion holes. Results: In general, stress values are always changing during walking cycle. Regarding medial femoral neck cortex at the fracture line, intact model showed almost consistent value. Both HP model and DSCS model amounted the highest around 30 MPa. At lateral holes, highest values were 18.8, 104.0, and 63.1 MPa of intact, HP, and DSCS models, respectively. Conclusion: Thus, our analysis simulating the real walking will be useful in evaluating time-varying stress distribution to assess postoperative complication. Clinical Relevance: DSCS is expected to be paramount for treatment of unstable femoral neck fractures.

Publisher

SAGE Publications

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3