Use of small animal PET-CT imaging for in vivo assessment of tendon-to-bone healing: A pilot study

Author:

Schär Michael O12ORCID,Ma Richard34,Demange Marco5,Morgan Matthew6,Chen Tina34,Ballon Douglas J7,Dyke Jonathan P7,Deng Xiang-Hua1,Rodeo Scott A1

Affiliation:

1. The Hospital for Special Surgery, New York, NY, USA

2. Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland

3. Missouri Orthopaedic Institute, University of Missouri Health Care, Columbia, MO, USA

4. Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA

5. Department of Orthopedic Surgery and Traumatology, University of São Paulo, São Paulo, Brasil

6. Veterinary Emergency and Referral Group (VERG), Brooklyn, NY, USA

7. Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY, USA

Abstract

Background The availability of non-invasive means to evaluate and monitor tendon-bone healing processes in-vivo is limited. Micro Positron-Emission-Tomography (µPET) using 18F-Fluoride is a minimally invasive imaging modality, with which osteoblast activity and bone turnover can be assessed. The aim of this study was to investigate the use of serial in-vivo µPET/CT scans to evaluate bone turnover along the graft-tunnel interface in a rat ACL (anterior cruciate ligament) reconstruction model. Methods Unilateral autograft ACL reconstruction was performed in six rats. µPET/CT-scans using 18F-Fluoride were performed 7, 14, 21, and 28 days postoperatively. Standard uptake values (SUV) were calculated for three tunnel regions (intraarticular aperture (IAA), mid-tunnel, and extraarticular aperture (EAA)) of the proximal tibia. Animals were sacrificed at 28 days and evaluated with µCT and histological analysis. Results SUVs in both bone tunnels showed an increased 18F-Fluoride uptake at 7 days when compared to 14, 21, and 28 days. SUVs showed a gradient on the tibial side, with most bone turnover in the IAA and least in the EAA. At 7, 14, 21, and 28 days, there were significantly higher SUV values in the IAA compared to the EAA ( p = .01, < .01, < .01, < .01). SUVs positively correlated with new bone volumetric density obtained with μCT (r = 0.449, p = .013). Volumetric density of newly formed bone detected on μCT correlated with osteoblast numbers observed along the tunnels in histological sections (r = 0.452, p < .016). Conclusions Serial in-vivo µPET/CT-scanning has the potential to provide insight into bone turnover and therefore osteoblastic activity during the healing process. As a result, it allows us to directly measure the effect of interventional strategies in tendon-bone healing.

Funder

Institute for Sports Medicine Research at Hospital for Special Surgery

Publisher

SAGE Publications

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3