Disentangling multiple sclerosis phenotypes through Mendelian disorders: A network approach

Author:

Bellucci Gianmarco1ORCID,Buscarinu Maria Chiara2,Reniè Roberta1,Rinaldi Virginia1ORCID,Bigi Rachele1,Mechelli Rosella3,Romano Silvia1,Salvetti Marco4ORCID,Ristori Giovanni2ORCID

Affiliation:

1. Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy

2. Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy

3. Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana, Rome, Italy San Raffaele Roma Open University, Rome, Italy

4. Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy

Abstract

Background: The increasing knowledge about multiple sclerosis (MS) pathophysiology has reinforced the need for an improved description of disease phenotypes, connected to disease biology. Growing evidence indicates that complex diseases constitute phenotypical and genetic continuums with “simple,” monogenic disorders, suggesting shared pathomechanisms. Objectives: The objective of this study was to depict a novel MS phenotypical framework leveraging shared physiopathology with Mendelian diseases and to identify phenotype-specific candidate drugs. Methods: We performed an enrichment testing of MS-associated variants with Mendelian disorders genes. We defined a “MS-Mendelian network,” further analyzed to define enriched phenotypic subnetworks and biological processes. Finally, a network-based drug screening was implemented. Results: Starting from 617 MS-associated loci, we showed a significant enrichment of monogenic diseases ( p < 0.001). We defined an MS-Mendelian molecular network based on 331 genes and 486 related disorders, enriched in four phenotypic classes: neurologic, immunologic, metabolic, and visual. We prioritized a total of 503 drugs, of which 27 molecules active in 3/4 phenotypical subnetworks and 140 in subnetwork pairs. Conclusion: The genetic architecture of MS contains the seeds of pathobiological multiplicities shared with immune, neurologic, metabolic and visual monogenic disorders. This result may inform future classifications of MS endophenotypes and support the development of new therapies in both MS and rare diseases.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3