Predictors of driving in individuals with relapsing–remitting multiple sclerosis

Author:

Akinwuntan Abiodun Emmanuel12,Devos Hannes3,Stepleman Lara4,Casillas Rhonda4,Rahn Rebecca2,Smith Suzanne2,Williams Mitzi Joi5

Affiliation:

1. Department of Physical Therapy, Georgia Health Sciences University, Augusta, USA

2. Department of Neurology, Georgia Health Sciences University, Augusta, USA

3. Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Belgium

4. Department of Psychiatry, Georgia Health Sciences University, Augusta, USA

5. MS Center of Atlanta, USA

Abstract

Background: We previously reported that performance on the Stroke Driver Screening Assessment (SDSA), a battery of four cognitive tests that takes less than 30 min to administer, predicted the driving performance of participants with multiple sclerosis (MS) on a road test with 86% accuracy, 80% sensitivity, and 88% specificity. Objectives: In this study, we further investigated if the addition of driving-related physical and visual tests and other previously identified cognitive predictors, including performance on the Useful Field of View test, will result in a better accuracy of predicting participants’ on-road driving performance. Methods: Forty-four individuals with relapsing–remitting MS (age = 46 ± 11 years, 37 females) and Expanded Disability Status Scale values between 1 and 7 were administered selected physical, visual and cognitive tests including the SDSA. The model that explained the highest variance of participants’ performance on a standardized road test was identified using multiple regression analysis. A discriminant equation containing the tests included in the best model was used to predict pass or fail performance on the test. Results: Performance on 12 cognitive and three visual tests were significantly associated with performance on the road test. Five of the tests together explained 59% of the variance and predicted the pass or fail outcome of the road test with 91% accuracy, 70% sensitivity, and 97% specificity. Conclusion: Participants’ on-road performance was more accurately predicted by the model identified in this study than using only performance on the SDSA test battery. The five psychometric/off-road tests should be used as a screening battery, after which a follow-up road test should be conducted to finally decide the fitness to drive of individuals with relapsing–remitting MS. Future studies are needed to confirm and validate the findings in this study.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3