Working memory network dysfunction in relapse-onset multiple sclerosis phenotypes: A clinical-imaging evaluation

Author:

Vacchi Laura1,Rocca Maria A2,Meani Alessandro1,Rodegher Mariaemma3,Martinelli Vittorio3,Comi Giancarlo3,Falini Andrea4,Filippi Massimo2

Affiliation:

1. Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

2. Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

3. Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

4. Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

Abstract

Objectives: We investigated clinical, behavioural and functional magnetic resonance imaging (fMRI) correlates of working memory load in relapse-onset multiple sclerosis (MS) patients. Methods: In total, 12 clinically isolated syndromes (CIS) patients at risk of MS, 38 relapsing-remitting multiple sclerosis (RRMS), 22 secondary progressive multiple sclerosis (SPMS) and 24 healthy controls (HC) performed an N-back fMRI task. Correlations between fMRI abnormalities and clinico-behavioural and structural magnetic resonance imaging (MRI) measures were assessed. Results: Participants activated brain regions of the working memory network, especially in fronto-parietal lobes and cerebellum, and deactivated areas of the default mode network (DMN). During the N-back load contrast, compared to HC, the three groups of MS patients had a common pattern of decreased activation of the right superior parietal lobule, left inferior parietal lobule and left middle frontal gyrus. Areas specifically more active in CIS patients compared to the other study groups were found in the left medial superior frontal gyrus and right anterior cingulate cortex, whereas SPMS patients selectively activated the left parahippocampal gyrus and left superior temporal pole (STP). Worse accuracy and global cognitive scores correlated with increased STP activation. Conclusion: Load-dependent alterations of working memory network recruitment occur in MS. Frontal hyperactivation is maintained in CIS and lost in SPMS. Abnormal recruitment of DMN areas is related to worse cognitive and behavioural outcomes.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3