Mapping white matter damage distribution in neuromyelitis optica spectrum disorders with a multimodal MRI approach

Author:

Cacciaguerra Laura1,Rocca Maria A2ORCID,Storelli Loredana3,Radaelli Marta4,Filippi Massimo5ORCID

Affiliation:

1. Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy

2. Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy

3. Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy

4. Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy

5. Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy

Abstract

Background: The pathogenetic mechanisms sustaining neuroinflammatory disorders may originate from the cerebrospinal fluid. Objective: To evaluate white matter damage with diffusion tensor imaging and T1/T2-weighted ratio at progressive distances from the ventricular system in neuromyelitis optica spectrum disorders and multiple sclerosis. Methods: Fractional anisotropy, mean, axial, and radial diffusivity and T1/T2-weighted ratio maps were obtained from patients with seropositive neuromyelitis optica spectrum disorders, multiple sclerosis, and healthy controls ( n = 20 each group). White matter damage was assessed as function of ventricular distance within progressive concentric bands. Results: Compared to healthy controls, neuromyelitis optica spectrum disorders patients had similar fractional anisotropy, radial and axial diffusivity, increased mean diffusivity ( p = 0.009–0.013) and reduced T1/T2-weighted ratio ( p = 0.024–0.037) in all bands. In multiple sclerosis, gradient of percentage lesion volume and intra-lesional mean and axial diffusivity were higher in periventricular bands. Compared to healthy controls, multiple sclerosis patients had reduced fractional anisotropy ( p = 0.001–0.043) in periventricular bands, increased mean ( p < 0.001), radial ( p < 0.001–0.004), and axial diffusivity ( p = 0.002–0.008) and preserved T1/T2-weighted ratio in all bands. Conclusion: White matter damage is higher at periventricular level in multiple sclerosis and diffuse in neuromyelitis optica spectrum disorders. Fractional anisotropy preservation, associated with increased mean diffusivity and reduced T1/T2-weighted ratio may reflect astrocyte damage.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3