In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis

Author:

Choi In-Young1,Lee Phil2,Adany Peter3,Hughes Abbey J4,Belliston Scott5,Denney Douglas R4,Lynch Sharon G5

Affiliation:

1. Hoglund Brain Imaging Center, Department of Neurology, Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA

2. Hoglund Brain Imaging Center, Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA

3. Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA

4. Department of Psychology, University of Kansas, Lawrence, KS, USA

5. Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA

Abstract

Background: The oxidative stress hypothesis links neurodegeneration in the later, progressive stages of multiple sclerosis (MS) to the loss of a major brain antioxidant, glutathione (GSH). Objective: We measured GSH concentrations among major MS subtypes and examined the relationships with other indices of disease status including physical disability and magnetic resonance imaging (MRI) measures. Methods: GSH mapping was performed on the fronto-parietal region of patients with relapsing-remitting multiple sclerosis (RRMS, n = 21), primary progressive multiple sclerosis (PPMS, n = 20), secondary progressive multiple sclerosis (SPMS, n = 20), and controls ( n = 28) using GSH chemical shift imaging. Between-group comparisons were performed on all variables (GSH, T2-lesion, atrophy, Expanded Disability Status Scale (EDSS)). Results: Patients with MS had substantially lower GSH concentrations than controls, and GSH was lower in progressive MS (PPMS and SPMS) compared with RRMS. GSH concentrations were not significantly different between PPMS and SPMS, or between RRMS and controls. Brain atrophy was significant in both RRMS and progressive MS compared with controls. Conclusion: Markedly lower GSH in progressive MS than RRMS indicates more prominent involvement of oxidative stress in the progressive stage of MS than the inflammatory stage. The association between GSH and brain atrophy suggests the important role of oxidative stress contributing to neurodegeneration in progressive MS, as suggested in other neurodegenerative diseases.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3