Neurophysiological MEG markers of cognitive impairment and performance validity in multiple sclerosis

Author:

Simon Shira1,Nauta Ilse M2ORCID,Hillebrand Arjan3,Schoonheim Menno M4ORCID,Uitdehaag Bernard MJ2,van Dam Maureen4ORCID,Hulst Hanneke E4ORCID,Klein Martin5,Stam Cornelis J1,de Jong Brigit A2,Strijbis Eva MM1ORCID

Affiliation:

1. Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands/Department of Clinical Neurophysiology and MEG center, Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

2. Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

3. Department of Clinical Neurophysiology and MEG center, Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

4. Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

5. Department of Medical Psychology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Abstract

Background: Suboptimal performance during neuropsychological testing frequently occurs in multiple sclerosis (MS), leading to unreliable cognitive outcomes. Neurophysiological alterations correlate with MS-related cognitive impairment, but studies have not yet considered performance validity. Objectives: To investigate neurophysiological markers of cognitive impairment in MS, while explicitly addressing performance validity. Methods: Magnetoencephalography recordings, neuropsychological assessments, and performance validity testing were obtained from 90 MS outpatients with cognitive complaints. Spectral and resting-state functional connectivity (rsFC) properties were compared between cognitively impaired (CI), cognitively preserved (CP), and suboptimally performing (SUB) patients using regression models and permutation testing. Results: CI had higher power in low-frequency bands and lower power in high bands compared to CP, indicating neuronal slowing. CI also showed lower beta power compared to SUB. Overall power spectra visually differed between CI and CP, and SUB showed overlap with both groups. CI had lower rsFC than CP and SUB patients. CP and SUB patients showed no differences. Conclusion: Neuronal slowing and altered rsFC can be considered cognitive markers in MS. Patients who performed suboptimally showed resemblance with patients with and without cognitive impairments, and although their overall neurophysiological profile was more similar to patients without impairments, it suggests heterogeneity regarding their pathophysiology.

Funder

Dutch MS Research Foundation

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3