Potential association of vitamin D receptor polymorphism Taq1 with multiple sclerosis

Author:

Cox Mathew B1,Ban Maria2,Bowden Nikola A1,Baker Amie2,Scott Rodney J1,Lechner-Scott Jeannette13

Affiliation:

1. University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia

2. Department of Clinical Neurosciences, University of Cambridge, UK

3. Department of Neurology, John Hunter Hospital, Newcastle, Australia

Abstract

Background: The environmental influence of sun exposure and vitamin D in particular and its implication with multiple sclerosis (MS) has recently received considerable attention. Current evidence based on genetic and epidemiological studies indicate that vitamin D is implicated in the aetiology of this disease. Methods: We examined two common variants in the vitamin D receptor ( VDR) gene in 1153 trio families and 726 cases and 604 controls. We also examined epistatic interactions between the VDR SNPs rs731236 and rs2228570 with the tagging single nucleotide polymorphism (SNP) rs3135388 for the HLA-DRB*1501 locus containing a highly conserved vitamin D responsive element within its promoter region. Results: We found weak evidence for an association between the rs731236C allele and MS, while there was no direct association with rs2228570. When examining the interaction between the VDR gene variations and the DRB1*1501 tagging SNP a more complex relationship was observed. Although the interaction was not statistically significant, there appeared to be a trend of increasing risk of MS in participants who were homozygous for the HLA-DRB1*1501 allele in association with the more active form of the VDR (Fok1). Conclusion: We have identified weak evidence of an association between a common variation within the VDR gene and MS, in the largest study reported to date of this candidate gene. There appears to be a relationship between polymorphisms in the VDR and the risk of MS, which is potentially modified by HLA-DRB1*1501.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3