Multi-parametric structural magnetic resonance imaging in relation to cognitive dysfunction in long-standing multiple sclerosis

Author:

Daams Marita1,Steenwijk Martijn D2,Schoonheim Menno M3,Wattjes Mike P2,Balk Lisanne J4,Tewarie Prejaas K4,Killestein Joep4,Uitdehaag Bernard MJ4,Geurts Jeroen JG3,Barkhof Frederik2

Affiliation:

1. Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands/Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands

2. Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands

3. Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands

4. Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands

Abstract

Background: Cognitive deficits are common in multiple sclerosis. Most previous studies investigating the imaging substrate of cognitive deficits in multiple sclerosis included patients with relatively short disease durations and were limited to one modality/brain region. Objective: To identify the strongest neuroimaging predictors for cognitive dysfunction in a large cohort of patients with long-standing multiple sclerosis. Methods: Extensive neuropsychological testing and multimodal 3.0T MRI was performed in 202 patients with multiple sclerosis and 52 controls. Cognitive scores were compared between groups using Z-scores. Whole-brain, white matter, grey matter, deep grey matter and lesion volumes; cortical thickness, (juxta)cortical and cerebellar lesions; and extent and severity of diffuse white matter damage were measured. Stepwise linear regression was used to identify the strongest predictors for cognitive dysfunction. Results: All cognitive domains were affected in patients. Patients showed extensive atrophy, focal pathology and damage in up to 75% of the investigated white matter. Associations between imaging markers and average cognition were two times stronger in cognitively impaired patients than in cognitively preserved patients. The final model for average cognition consisted of deep grey matter DGMV volume and fractional anisotropy severity (adjusted R²=0.490; p<0.001). Conclusion: From all imaging markers, deep grey matter atrophy and diffuse white matter damage emerged as the strongest predictors for cognitive dysfunction in long-standing multiple sclerosis.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3