Macrophages: their myelinotrophic or neurotoxic actions depend upon tissue oxidative stress

Author:

Bartnik B L1,Juurlink B HJ1,Devon R M2

Affiliation:

1. Department of Anatomy and Cell Biology and The Cameco Multiple Sclerosis and Neuroscience Research Centre, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada

2. Department of Oral Biology, and The Cameco Multiple Sclerosis and Neuroscience Research Centre, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada

Abstract

There are still questions regarding whether macrophages found in MS lesions are agents of recovery or of destruction. To address this, we examined in aggregate cultures prepared from dissociated embryonic spinal cord tissue, with or without addition of exogenous macrophages, the effect of menadione-induced oxidative stress. Similar to findings of other laboratories, we observed that in the absence of oxidative stress macrophage enrichment promoted myelinogenesis. In macrophage-poor cultures, menadione at 5 μM had very little effect upon the status of the aggregate cultures; however, increasing this to 10 and 20 μM did result in some damage to axons and myelin. By contrast, in macrophage enriched cultures, menadione at a concentration as little as 5 μM caused the complete destruction of the aggregates. We suggest that in neural tissues that have sufficiently high macrophage numbers, oxidative stress results in a positive inflammatory feedback loop that results in massive tissue destruction. We further suggest that what we see in macrophage-enriched aggregates subjected to oxidative stress may represent what happens in the Marburg-type of MS lesion.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3