Increased expression of ER stress- and hypoxia-associated molecules in grey matter lesions in multiple sclerosis

Author:

McMahon JM1,McQuaid S2,Reynolds R3,FitzGerald UF1

Affiliation:

1. MS and Stroke Research Group, NCBES, National University of Ireland, Ireland

2. Tissue Pathology, Belfast Health & Social Care Trust and Queens University of Belfast, UK

3. Centre for Neuroscience, Department of Medicine, Imperial College London, UK

Abstract

Background: The endoplasmic reticulum (ER) stress pathway may play a role in the pathogenesis multiple sclerosis (MS), and while ER stress-associated molecules have been demonstrated in white matter (WM) lesions, these have not been analysed in grey matter (GM) demyelination. Objective: The objective was to characterise the type and frequency of GM lesions and establish expression profiles of ER stress- and hypoxia-associated markers. Methods: Sections from 16 MS cases and 12 non-MS controls were stained for ER stress molecules (BiP and CHOP) and hypoxia-associated D110 antigen. Results: Of the GM lesions analysed, 24% were type 1 (continuous between GM and WM), 22% were type 2 (entirely within GM) and the majority (54%) were type 3 (extending from pia mater). Comparison of GM lesions, MS normal-appearing grey matter (NAGM) and non-MS control tissue showed that NAGM, type 1 and type 3 lesions all had significantly increased levels of CHOP compared to controls. According to morphological and dual-labelling criteria, the majority of CHOP-positive cells were microglia. Approximately 50% of GM lesions contained D110-positive cells. Conclusion: These data suggest that ER stress plays an important role in GM lesion development and may be critical in activation of microglia in pre-lesional NAGM. The high number of lesions containing D110-positive cells suggests a role for hypoxic-like insult in GM lesion development.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3