Clinically benign multiple sclerosis despite large T2 lesion load: Can we explain this paradox?

Author:

Strasser-Fuchs S.1,Enzinger C.2,Ropele S.1,Wallner M.1,Fazekas F.3

Affiliation:

1. Department of Neurology, Division of Neuroradiology, Medical University, Graz, Austria

2. Department of Neurology, Division of Neuroradiology, Medical University, Graz, Austria, Department of Radiology, Division of Neuroradiology, Medical University, Graz, Austria

3. Department of Neurology, Division of Neuroradiology, Medical University, Graz, Austria,

Abstract

Magnetic resonance imaging (MRI) techniques such as magnetization transfer imaging and magnetic resonance spectroscopy (MRS) may reveal otherwise undetectable tissue damage in multiple sclerosis (MS) and can serve to explain more severe disability than expected from conventional MRI. That an inverse situation may exist where non-conventional quantitative MRI and MRS metrics would indicate less abnormality than expected from T2 lesion load to explain preserved clinical functioning was hypothesized. Quantitative MRI and MRS were obtained in 13 consecutive patients with clinically benign MS (BMS; mean age 44 ± 9 years) despite large T 2 lesion load and in 15 patients with secondary progressive MS (SPMS; mean age 47 ± 6 years) matched for disease duration. The magnetization transfer ratio (MTR), magnetization transfer rate ( kfor), brain parenchymal fraction (BPF) and brain metabolite concentrations from proton MRS were determined. BMS patients were significantly less disabled than their SPMS counterparts (mean expanded disability status score: 2.1 ± 1.1 versus 6.2 ± 1.1; P < 0.001) and had an even somewhat higher mean T2 lesion load (41.2 ± 27.1 versus 27.9 ± 24.8 cm3; P = 0.19). Normal appearing brain tissue histogram metrics for MTR and kfor, mean MTR and kfor of MS lesions and mean BPF were similar in BMS and SPMS patients. Levels of N-acetyl-aspartate, choline and myoinositol were comparable between groups. This study thus failed to explain the preservation of function in our BMS patients with large T2 lesion load by a higher morphologic or metabolic integrity of the brain parenchyma. Functional compensation must come from other mechanisms such as brain plasticity. Multiple Sclerosis 2008; 14: 205—211. http://msj.sagepub.com

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3