[Cu-Ag2]O–C3N4 nanoframeworks for efficient photodegradation of wastewaters

Author:

Padervand Mohsen1,Fasandouz Fatemeh Mesri1,Beheshti Abolghasem2

Affiliation:

1. Department of Chemistry, University of Maragheh, Maragheh, Iran

2. Department of Chemistry, Payame Noor University (PNU), Tehran, Iran

Abstract

CuO- and Ag2O-decorated g-C3N4 photocatalysts were prepared by appropriate chemical modification of carbon nitride nanosheets produced from programmed pyrolysis of urea. After comprehensive characterization by powder X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform–infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller analysis methods, their photocatalytic performances were examined for the removal of Acid Blue 92 azo dye, as a typical wastewater component from the textile industry. The X-ray diffraction patterns confirmed the presence of CuO and Ag2O nanoparticles on the surface of the sheets. In addition, diffuse reflectance spectra indicated a considerable reduction of the band gap of pure C3N4 by modification. The photoreaction was discussed mechanistically and the best operational parameters were found to achieve the highest efficiency under visible light.

Publisher

SAGE Publications

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3