Influence of sulfating method on La–Ni–S2O82–/ZrO2–Al2O3 solid superacid catalyst for n-pentane isomerization

Author:

Zhao Haiqiang1,Song Hua1,Zhao Lele1,Li Feng1

Affiliation:

1. College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, P.R. China

Abstract

La–Ni–S2O82–/ZrO2–Al2O3 catalysts were successfully prepared by two different methods of sulfate impregnation, and the physico-chemical properties of the catalysts were characterized by X-ray diffraction, Brunauer–Emmett–Teller analysis, Fourier transform infrared spectroscopy, pyridine adsorption–infrared spectroscopy, and X-ray photoelectron spectroscopy techniques. Catalytic activities were evaluated in a fixed-bed flow reactor using n-pentane isomerization as the probe reaction. Compared with catalyst La–Ni–S2O82–/ZrO2–Al2O3-I, prepared by the traditional impregnation method, the catalyst La–Ni–S2O82–/ZrO2–Al2O3-W, prepared by the incipient-wetness impregnation method, possessed higher pore volume, pore size, sulfur content, and stronger Brønsted acid sites. The catalytic activity for La–Ni–S2O82–/ZrO2–Al2O3-W was maintained at around 56% within 3000 min with an isopentane selectivity of 88% which showed much greater stability than that of La–Ni–S2O82–/ZrO2–Al2O3-I. This can be attributed to the fact that (1) the large pore size and pore volume of La–Ni–S2O82–/ZrO2–Al2O3-W can largely suppress carbon deposition and (2) the more numerous and stronger Brønsted acid sites for La–Ni–S2O82–/ZrO2–Al2O3-W guaranteed to provide enough acid sites for isomerization during the reaction process.

Publisher

SAGE Publications

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3