Equating in small-scale language testing programs

Author:

LaFlair Geoffrey T.1,Isbell Daniel2,May L. D. Nicolas3,Gutierrez Arvizu Maria Nelly4,Jamieson Joan4

Affiliation:

1. University of Kentucky, USA

2. Michigan State University, USA

3. CaMLA, Ann Arbor, Michigan, USA

4. Northern Arizona University, USA

Abstract

Language programs need multiple test forms for secure administrations and effective placement decisions, but can they have confidence that scores on alternate test forms have the same meaning? In large-scale testing programs, various equating methods are available to ensure the comparability of forms. The choice of equating method is informed by estimates of quality, namely the method with the least error as defined by random error, systematic error, and total error. This study compared seven different equating methods to no equating – mean, linear Levine, linear Tucker, chained equipercentile, circle-arc, nominal weights mean, and synthetic. A non-equivalent groups anchor test (NEAT) design was used to compare two listening and reading test forms based on small samples (one with 173 test takers the other, 88) at a university’s English for Academic Purposes (EAP) program. The equating methods were evaluated based on the amount of error they introduced and their practical effects on placement decisions. It was found that two types of error (systematic and total) could not be reliably computed owing to the lack of an adequate criterion; consequently, only random error was compared. Among the seven methods, the circle-arc method introduced the least random error as estimated by the standard error of equating (SEE). Classification decisions made using the seven methods differed from no equating; all methods indicated that fewer students were ready for university placement. Although interpretations regarding the best equating method could not be made, circle-arc equating reduced the amount of random error in scores, had reportedly low bias in other studies, accounted for form and person differences, and was relatively easy to compute. It was chosen as the method to pilot in an operational setting.

Publisher

SAGE Publications

Subject

Linguistics and Language,Social Sciences (miscellaneous),Language and Linguistics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3