Methyl Jasmonate- and Light-Induced Glucosinolate and Anthocyanin Biosynthesis in Radish Seedlings

Author:

Al-Dhabi Naif Abdullah1,Arasu Mariadhas Valan1,Kim Sun Ju2,RomijUddin Md.3,Park Woo Tae4,Lee Sook Young5,Park Sang Un46

Affiliation:

1. Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Bio-Environmental Chemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305–764, Korea

3. Department of Agronomy, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh

4. Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea

5. Regional Innovation Center for Dental Science & Engineering, Chosun University, 309Pilmun-daero, Dong-gu, Gwangju, 501-759, Korea

6. Visiting Professor Program (VPP), King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

Radish sprouts and young seedlings are considered important dietary vegetables in Asian countries. In this study, we investigated the levels of glucosinolate and anthocyanin accumulation in radish seedlings in response to light and methyl jasmonate (MeJA) treatments. MeJA facilitated the accumulation of glucosinolate and anthocyanins under light conditions. The glucosinolate and anthocyanin contents in the radish seedlings that were exposed to light after MeJA treatment were higher than those of the seedlings that were grown in the dark without MeJA. At a concentration of 100 μM, MeJA led to the greatest accumulation of the most glucosinolates under both light and dark conditions. Under light conditions, the levels of glucoraphenin, glucoerucin, and glucotropaeolin accumulation were 1.53-, 1.60-, and 1.30-fold higher, respectively, than those of the control. Remarkable accumulations of glucobrassicin were observed under light conditions (4.4-, 6.7-, and 7.8-fold higher than that of the control following the application of 100, 300, and 500 μM MeJA, respectively). The level of cyanidin in the 300μM MeJA-treated seedlings was double of that in the control without MeJA treatment. The highest level of pelargonidin was observed after treatment with 500 μMMeJA under light conditions; this level was 1.73times higher than that in the control. A similar trend of anthocyaninaccumulation was observed in the radish seedlings following MeJA treatment under dark conditions, but the levels of anthocyanins were considerably lower in the seedlings that were grown in the dark. Our findings suggest that light and low concentrations of MeJA enhance the accumulations of glucosinolates and anthocyanins during the development of radish seedlings.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3