Micropollutant transformation and toxicity: Electrochemical ozonation versus biological metabolism

Author:

Bröcker JHL1,Stone W1ORCID,Carstens A1,Wolfaardt GM12

Affiliation:

1. Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa

2. Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada

Abstract

Environmental water sources are constantly polluted by anthropogenic compounds, not always minimized by conventional water treatment methods to remove these compounds at the micro- and nano-range. The absolute concentrations of a suite of seven representative environmental micropollutants were compared pre- and post-treatment with both ozone and microbial biofilms, in terms of removal efficiencies and toxicity assays. Both synthetic micropollutant mixes and environmental water samples were evaluated. The study started with two representative micropollutants (carbamazepine, CBZ, and sulfamethoxazole, SMX), and broadened into a suite of pollutants, evaluating whole-sample eco-toxicological footprints. An ozone concentration of 4.24 ± 0.27 mg/L in tap water, resulted in an 87.9% and 96.5% removal of CBZ and SMX, respectively, within 1 min. Despite almost immediate removal of parent micropollutants by oxidation, endocrine disruption potential (anti-estrogenicity) of CBZ and SMX required up to 240 min of ozone treatment to show no assay effect. A broader suite of micropollutants in more complex environmental matrices showed scavenging of ozone (2.95 ± 0.17–0.25 ± 0.03 mg/L) and varying micropollutant recalcitrance to oxidation. Lower matrix pollution led to lower reduction in eco-toxicity. Microbial degradation of CBZ and SMX (56% and 70% versus 19% and 79%, respectively, in duplicate biofilms) by nutrient-limited biofilms showed less removal than ozonation, with marked variation due to the stochastic nature of biofilm sloughing. Microbial degradation of CBZ and SMX resulted in an increase of >90% in both estrogenicity and Aliivibrio inhibition. The results obtained from this study address a gap in understanding the removal efficiency of micropollutants, where the removal process often receives more attention than the comparative reduction of toxicological effects. This shift from a controlled laboratory environment to real-world scenarios also provided comparative insights into the removal of micropollutants and the eco-toxicity of the transformation by-products of each process.

Funder

Stellenbosch University

European Union Horizon

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3