Development of cardiotoxicity model using ligand-centric and receptor-centric descriptors

Author:

Patel Chirag N1,Kumar Sivakumar Prasanth12,Rawal Rakesh M3,Thaker Manishkumar B4,Pandya Himanshu A1ORCID

Affiliation:

1. Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India

2. Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India

3. Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India

4. Department of Statistics, M.G. Science Institute, Gujarat University, Ahmedabad, Gujarat, India

Abstract

Background: Bioinformatics and statistical analysis have been employed to develop a classification model to distinguish toxic and non-toxic molecules. Aims: The primary objective of this study is to enumerate the cut-off values of various physico-chemical (ligand-centric) and target interaction (receptor-centric) descriptors which forms the basis for classifying cardiotoxic and non-toxic molecules. We also sought correlation of molecular docking, absorption, distribution, metabolism, excretion, and toxicology (ADMET) parameters, Lipinski rules, physico-chemical parameters, etc. of human cardiotoxicity drugs. Methods: A training and test set of 91 compounds were applied to linear discriminant analysis (LDA) using 2D and 3D descriptors as discriminating variables representing various molecular modeling parameters to identify which function of descriptor type is responsible for cardiotoxicity. Internal validation was performed using the leave-one-out cross-validation methodology ensuing in good results, assuring the stability of the discriminant function (DF). Results: The values of the statistical parameters Fisher Discriminant Analysis (FDA) and Wilk’s λ for the DF showed reliable statistical significance, as long as the success rate in the prediction for both the training and the test set attained more than 93% accuracy, 87.50% sensitivity and 94.74% specificity. Conclusion: The predictive model was built using a hybrid approach using organ-specific targets for docking and ADMET properties for the FDA (Food and Drug Administration) approved and withdrawn drugs. Classifiers were developed by linear discriminant analysis and the cut-off was enumerated by receiver operating characteristic curve (ROC) analysis to achieve reliable specificity and sensitivity.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3