Study on the vibration reduction characteristics of shock absorber throttle orifice in tractor suspension

Author:

Zhang Xin1,Xiao Zengliang1ORCID,Li Zhanlong1,Liu Yuanyou1

Affiliation:

1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China

Abstract

The hydraulic shock absorber of a certain tractor suspension system is analyzed to determine the influence of the cross-sectional area ratio of the throttling holes of the restoration valve and the compression valve on the vibration damping performance of the whole vehicle, using a new method of machine-hydraulic co-simulation. First, the AMESim model of the hydraulic shock absorber is established, and the Kriging model is used to approximate the parameters of the AMESim hydraulic shock absorber model; the multi-island genetic algorithm and the gradient descent algorithm are used to obtain the three scenarios in which the cross-sectional area ratios of the throttle orifices of the same equivalent damping coefficients are greater than, equal to, or less than one. Then, a co-simulation model of 1/4 vehicle Recurdyn/AMESim and a co-simulation model of the whole vehicle with 162 degrees of freedom were established. The result show that, compared with the traditional method, this machine-hydraulic co-simulation method improves the calculation accuracy, calculation speed, and co-simulation model parameter accuracy. For low-speed conditions, when the throttle orifice area ratio equals 0.32, the minimum vehicle body center acceleration (root mean square value equal to 1.78 m/s2) is achieved. For high-speed driving conditions, when the throttle orifice area ratio is approximately 3.1, the minimum vehicle body center acceleration (root mean square value equal to 3.52 m/s2) is achieved.

Funder

Graduate Education Innovation Project of Taiyuan University of Science and Technology

Applied Basic Research Project of Shanxi Province, China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3