Affiliation:
1. School of Mechanical Engineering, Kalinga Institute of Industrial Technology (KIIT, Deemed to be University), Bhubaneswar, India
2. Department of Materials and Metallurgical Engineering, Maulana Azad National Institute of Technology (MANIT), Bhopal, India
Abstract
In automobiles suspension system, laminated springs are widely used for the absorption of shock and vibration. These laminated springs account for approximately 10%–20% of the unsprung weight of the vehicle. It has been found that composite material is used to reduce the weight of the vehicle in order to obtain better efficiency. Therefore, in the current research work, composite material is used for the fabrication of laminated spring. Among the various types of glass fiber available, the C-glass fiber has been widely used due to its better corrosion resistant property. Commercial software package ANSYS is used to optimize the composite-laminated spring. The optimized leaf spring is then fabricated by the hand layup method. It was found that the spring with composite graduated leaf resulted in 40% reduction in weight than the spring with steel graduated leaf. Similarly, the stress concentration and deformation values are reduced by 76.39% and 50% in comparison with those of steel graduated leaf. The composite-laminated spring showed better damping property and also resulted in less transmission of force to the chassis of the vehicle. The noise induced by the composite-laminated spring is also reduced in comparison with steel graduated leaf. Finally, a composite-laminated spring is found to be lighter in weight and with better noise, vibration, and harshness in comparison with steel graduated leaf. Thus, it is found to be best suited for an electric vehicle.
Subject
Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献