Tuning vibration absorbers to mitigate simultaneous regenerative and mode-coupling chatter

Author:

Mobaraki Mojtaba1ORCID,Ratava Juho1

Affiliation:

1. LUT University, Lappeenranta, Finland

Abstract

This paper examines a set of parametric tunings for vibration absorbers to enhance stability in the event of simultaneous chatter during machining and proposes a novel tuning criterion of minimizing the definite integral of frequency response function, while accounting for damping of the absorber’s base component. Chatter vibrations are an inherent characteristic of machining processes, and a common tool for mitigating chatter is a tuned mass damper (TMD), which functions effectively when its dynamic characteristics are appropriately tuned to the natural frequency of the vibrating base component. Robotic machining is a recent cost-effective method of material removal, but simultaneous regenerative and mode-coupling chatter can arise on robot tools. TMD tuning criteria for mode-coupling and regenerative chatter are different, and tuning to suppress one may prompt the other. Moreover, conventional analytical tunings do not consider damping of the base component, which may be a valid assumption for low-damped machine tools but not for highly-damped robot tools. The possibility of simultaneous chatter and base component damping effect necessitates the exploration of alternative tuning criteria.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strain modal response and vibration damping optimization of tower for wind power equipment;Journal of Vibroengineering;2024-06-18

2. Chatter detection and suppression in machining processes: a comprehensive analysis;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-01-23

3. Lightweight steering equipment based on prestressed modal analysis;Journal of Vibroengineering;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3