A novel intelligent fault diagnosis method based on variant sparse filtering and back-propagation

Author:

Chan Lifeng1,Cheng Chun2ORCID

Affiliation:

1. Jiangsu Normal University Kewen College, Xuzhou, China

2. School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou, China

Abstract

Detecting the mechanical faults of rotating machinery in time plays a key role in avoiding accidents. With the coming of the big data era, intelligent fault diagnosis methods based on machine learning models have become promising tools. To improve the feature learning ability, an unsupervised sparse feature learning method called variant sparse filtering is developed. Then, a fault diagnosis method combining variant sparse filtering with a back-propagation algorithm is presented. The involvement of the back-propagation algorithm can further optimize the weight matrix of variant sparse filtering using label data. At last, the developed diagnosis method is validated by rolling bearing and planetary gearbox experiments. The experiment results indicate that the developed method can achieve high accuracy and good stability in rotating machinery fault diagnosis.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Jiangsu Normal University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3