Computational fluid dynamics investigation into flow behavior and acoustic mechanisms at the trailing edge of an airfoil

Author:

Jackson Beren R1,Dakka Sam M1

Affiliation:

1. Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK

Abstract

Airfoil self-noise or trailing edge noise and shear noise were investigated computationally for a NACA 0012 airfoil section, focusing on noise mechanisms at the trailing edge to identify and understand sources of noise production using ANSYS Fluent. A two-dimensional computational fluid dynamics simulation has been performed for 0°, 8°, and 16° airfoil angles of attack capturing surface pressure contours, contours of turbulent intensity, contours of surface acoustic power level, vorticity magnitude levels across the airfoil profile, and x- and y-directional self-noise and shear noise sources across the airfoil profile. The results indicate that pressure gradients at the upper surface do increase as the angle of attack increases, which is a measure of vortices near the surface of the trailing edge associated with turbulence cease as the boundary layer begins to separate. Comparison of the turbulent intensity contours with surface acoustic power level contours demonstrated direct correlation between the energy contributed by turbulent structures (i.e. vortices) and the level of noise measured at the surface and within the boundary layer of the airfoil. As angle of attack is increased, both x and y sources have the same trends; however, y sources (perpendicular to the free-stream flow) appear to have a bigger impact as angle of attack is increased. Furthermore, as the angle of attack increased, shear noise contributes less and less energy further downstream of the airfoil and becomes dominated by noise energy from vortical structures within turbulence. The two-dimensional computational fluid dynamics simulation revealed that pressure, turbulent intensity, and surface acoustic power contours further corroborated the previously tested noise observations phenomena at the trailing edge of the airfoil.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3