A research on rubbing feature extraction based on information fusion and signal decomposition algorithm

Author:

Yu Mingyue1,Cong Haonan1ORCID,Chen Wangying1ORCID

Affiliation:

1. Shenyang Aerospace University, Shenyang, China

Abstract

To effectively identify the rotor–stator rubbing fault, the paper has brought forward a method combining principal component analysis (PCA), intrinsic time-scale decomposition (ITD), and information entropy (IE). Firstly, in considering that the characteristic information of faults extracted from the information collected by single sensor is not complete or comprehensive, the approach blends the vibration signals collected from 4 different positions at the same moment based on PCA algorithm; secondly, regarding that ITD algorithm can effectively avoid the problems of poor adaptivity and end effect, blended signals are broken down based on ITD algorithm; thirdly, calculate the IE of self-correlation function of each PRC based on the fact that the smaller IE is, the less confusion system has and the easier it is to extract fault characteristics, and treat the self-correlation function of PRC related with the minimum IE as optimal component to represent fault characteristics; fourthly, characteristic extraction of rotor–stator rubbing fault and identification are done on the basis of the frequency spectrum of optimal component. To prove the availability of method, vibration signals are subjected to validation and analysis, which are collected from different rotation speeds, casing thicknesses, rubbing positions, and types. The result indicates that the proposed PCA–ITD–IE can equally and effectively extract the characteristics of rotor–stator rubbing faults of aero-engine involved in various conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Aeronautical Science Foundation of China

Department of Education of Liaoning Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3