Comparison of non-linear vibration of outer race defective ball bearing using two defect functions

Author:

Jain Prashant H1ORCID,Bhosle Santosh P2,Keche Ashok J2,Desavale Ramchandra G3

Affiliation:

1. Department of Mechanical Engineering, T.P.C.T’s College of Engineering, Dharashiv (Osmanabad), India.

2. Department of Mechanical Engineering, Maharashtra Institute of Technology, Chhatrapati Sambhajinagar (Aurangabad), India

3. Rajarambapu Institute of Technology, Sangli, India

Abstract

The aim of this article is to study the effects of evolution in defect size on vibration of a ball bearing by simulation of a ball bearing by developing a 2-DOF mathematical model and to compare the vibration responses of defective bearings obtained for two widely used defect functions, viz., rectangular function and half-sine wave function. MATLAB codes are developed to prepare a mathematical model of a ball bearing and to solve the differential equations of the model using the Runge-Kutta method. In the model, the mass supported by the bearing is considered as a lumped mass, and the contact between the races and the balls is considered as a series of springs, whose spring stiffness is obtained by using Hertz’s contact deformation theory. This model considers the contact deformation between the balls and the races and the additional displacement between the balls and the inner race due to radial clearance and defect geometry. The maximum possible radial displacement of the ball into the defect is obtained analytically and graphically from the race-ball-defect geometry. First, the impulses generated due to an outer race defect in the ball bearing are modeled using two different defect functions separately and their vibration responses are compared. Secondly, the effects of increase in defect length on vibration of the bearing are simulated separately for two defect functions, and then their responses are compared and analyzed. The results show that when the defect is modeled with a rectangular defect function, the vibration responses obtained are greater than when the defect is modeled with a half-sine wave defect function. And, vibration responses increase rapidly up to a certain level of defect length and then decrease with a further increase in defect length. The vibration analysis performed for different defect lengths can provide good support to vibration analysts and researchers.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3