Sound pressure level determination around the transformer using coherent and incoherent analytical summation methods

Author:

Petrović Karlo1ORCID,Petošić Antonio2,Župan Tomislav1

Affiliation:

1. Končar – Electrical Engineering Institute Ltd., Zagreb, Croatia

2. Department of Electroacoustics, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

Abstract

In this paper, coherent and incoherent analytical summation methods from elementary sound sources on the transformer’s tank are presented. They aim to determine a one-third-octave spectrum of sound pressure levels (SPL) in points around the transformer. Each part of the transformer’s surface is treated as a separate plane source so the analytical calculation can be applied to find SPL in the surroundings. Reflections from the ground are also considered by putting an image of the plane sources on the other side of the reflecting plane and adding its contributions to the total pressure in the desired points. Grid-like vibration measurements of vibration velocity on the tank surfaces are used as input parameters. Vibrations and sound pressure levels are measured to validate the method on the 5 MVA transformer experimental object. The SPL around the transformer in short-circuit (SC) and open-circuit (OC) tests is measured in the semi-anechoic chamber to compare it with theoretical results. By analyzing the results, the coherent calculation with reflection provided the most accurate results. In the SC operating condition, the normalized root mean square error (NRMSE) is 17.2%, and in the OC operating condition, it is 10.9%. The novelty of the presented method is that it considers complicated transformer geometry where each surface is calculated as a separate noise source. It calculates noise at a distance from the elementary vibration sources, considering phase and reflection from the hard ground, and provides detailed noise maps that can be used for noise modeling around the substations.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3