Biogenic corrosion inhibition through Bacillus coagulans on mild steel in mild acidic medium

Author:

Lamba Sonika1,Patel Saraswati23,Vishwakarma Rajendra1ORCID,Dwivedi Jaya1,Sharma Swapnil2

Affiliation:

1. Department of Chemistry, Banasthali Vidhyapith, Jaipur, India

2. Department of Pharmacy, Banasthali Vidhyapith, Jaipur, India

3. Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai

Abstract

In the present study, the corrosion inhibition properties of Bacillus coagulans against mild steel (MS) were studied employing electrochemical procedures to monitor the real-time corrosion rate, mechanism, development of efficient mitigation strategies, and material protection. Results of the study revealed that under acidic environments B. coagulans formed a protective biofilm on MS surface and caused marked reduction in corrosion and other forms of mutilation. Characterization and electrochemical procedures were performed to investigate the inhibitory effects of B. coagulans at different pH and at different temperatures on the corrosion rate and, to determine the mechanism of corrosion prevention. The film developed on surface of the MS by B. coagulans, was crack free, compact, and lipophilic in nature and was composed of amyloid fibers, carboxylic acid, and proteins that make electrochemical reactions that, accruing on the metal–solution interface difficult and substantial reduction in corrosion rates observed. The film adhered to the surface of metal substrates shows fitting with diverse adsorption isotherm indications, with physical adsorption being the predominant pattern observed in most cases. This suggests that the interaction between the biofilm and metal surfaces is primarily governed by physical forces. To conclude, B. coagulans exhibits protective action on MS against corrosion.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3