Corrosion resistance of hybrid plasma electrolytic oxidation coatings on AZ31B magnesium alloy in simulated body fluid

Author:

Kumar C. Vinoth1,Rajyalakshmi G.1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India

Abstract

This study examines the effects of a hydroxyapatite/anatase TiO2/CeO2 coating on the corrosion of AZ31B magnesium alloy in a simulated body fluid. Plasma electrolytic oxidation (PEO) is used to create the coating, and the surface properties are analysed using X-ray diffraction (XRD), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FE-SEM). Contact angle measurements adapted to compare the uncoated substrate (144.74 ± 2.08°) with the coated substrates, which exhibit contact angles of (107.92 ± 2.16°), (95.88 ± 2.06°) and (66.05 ± 2.09°) for the respective coating durations. Increasing the thickness of the coating improves its corrosion resistance. Specifically, a 6-minute PEO coating significantly increases the thickness and provides better protection against corrosion for the AZ31B magnesium alloy. Cross-sectional scans of the coated samples revealed an increase in specimen thickness from 32.92 μm to77.17 μm. Potentiodynamic polarisation tests in a simulated body fluid reveal that the 6-minute coated sample shows the highest corrosion resistance, with the lowest corrosion current density (1.9037 × 10-06) compared to other coatings, indicating strong protection against corrosion. This research proposes a novel method to enhance the corrosion resistance of PEO coatings on magnesium alloys by depositing a thicker layer of hydroxyapatite, anatase TiO2 and CeO2. This approach results in a stronger and more effective protective system against corrosion.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3