Effect of high-temperature molten salt corrosion on the mechanical properties of stainless steel

Author:

Chen Xia1,Xie Ying1ORCID,Wu Yuting1,Bian Jiaojiao1,Ma Chongfang1

Affiliation:

1. Key Laboratory of Heat Transfer Enhancement and Energy Conservation of Education Ministry and Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing, China

Abstract

The corrosivity of molten salt can be detrimental to the safe operation and longevity of concentrated solar thermal power generation equipment. Additionally, the presence of impurity Cl can increase corrosion on metal materials, leading to mechanical property degradation. To assess the extent of this effect, the corrosion behaviour of three types of stainless steel (304, 316L, and 347H) in molten salt at high temperatures was studied using the loss-in-weight method and tensile tests. According to the findings, the Rdepths of 304, 316L, and 347H stainless steels are 0.0018 mm/a, 0.0016 mm/a, and 0.0019 mm/a, respectively, resulting in a decrease in elongation of 12.2%, 7.0%, and 3.7% after 720 h of corrosion at 600°C. Furthermore, at a higher temperature of 680°C, the Rdepths of all stainless steels increased, and the elongation decreased by 25.4%, 18.9%, and 13.5%, respectively. Similar corrosion behaviour was observed in 347H stainless steel with increased chloride ion concentration. However, the yield strength and tensile strength of stainless steel did not exhibit significant changes under different experimental conditions. The corrosion mechanism of metal alloys in molten salt is mainly due to the selective corrosion of Cr and its dissolution into molten salt in the form of ions.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3