Displacement of One Drug by Another from Carrier or Receptor Sites

Author:

Brodie Bernard B1

Affiliation:

1. Laboratory of Chemical Pharmacology, National Heart Institute, Bethesda, Maryland, USA

Abstract

The medium of drug transfer is the water of plasma and extracellular fluid. Without complicating factors, the level of drug at a receptor site would be equal to that in the tissues and in plasma, and in dynamic equilibrium. Actually, almost all drugs are reversibly bound to proteins in plasma or tissue. The bound drug, often a high proportion of the total, acts as a reservoir, preventing wild fluctuations between ineffective and toxic levels of the biologically active unbound fraction. Displacement from a receptor site diminishes drug activity, but displacement from plasma or tissue proteins augments the effect by making more unbound drug available at the receptor site. Atropine has no intrinsic activity, but displaces acetylcholine or pilocarpine from receptors at para-sympathetic nerve endings. Similarly guanethidine competes with noradrenaline at sympathetic nerve endings, but in turn is displaced by amphetamine-like drugs. Many acidic drugs (phenylbutazone, sulfonamides, coumarin anticoagulants, salicylates, &c.) are highly bound to one or two sites on albumin molecules. When the limited carrying capacity of the plasma proteins is filled, any unbound surplus is usually soon metabolized or excreted, so the plasma level becomes restabilized. Meanwhile, however, there may be dramatic effects such as hypoglycemia, when sulfonamides are given to patients on tolbutamide, or bleeding when phenylbutazone is given to patients on warfarin. Although hormones, like thyroxine, insulin and cortisol, are carried by specific proteins, they too can be displaced. All the antirheumatic drugs so far examined have displaced cortisol and presumably driven it into tissues. This may be one mechanism of action. Possibly the sulfonylurea drugs act by displacing insulin from proteins in the pancreas, plasma or elsewhere.

Publisher

SAGE Publications

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3