The Red-Line of Workload: Theory, Research, and Design

Author:

Grier Rebecca,Wickens Christopher,Kaber David,Strayer David,Boehm-Davis Deborah,Trafton J. Gregory,St. John Mark

Abstract

Multi-tasking is now ubiquitous component of our lives; despite the fact that we all can cite an incident where multi-tasking put us in a difficult situation. The reason so many of us do multi-task is that most of the time we are capable of effective dual task performance. Hart and Wickens (2008) have defined the point where one traverses safe and effective multi-tasking to dangerous and ineffective multi-tasking as the “red-line” of workload. In this panel, we will discuss this “red-line” of workload from the theoretical, empirical, and practical viewpoints. To that end, we first examine what theories of attention can help guide empiric search for this red line and where these theories must be expanded with further research. The greatest need is research that will allow human factors practitioners to identify the red line of workload before a system has been developed. One approach to achieving this research is to leverage the approach of industrial ergonomics, which has successfully defined physical workload limits by using data from safety incidents. Another avenue of research to be discussed is that which will lead to refinement of our theories and understanding of cognitive function to improve our ability to predict the red line. Next we move to the problem of evaluating systems to ensure that the red line of workload is not crossed. In particular, we will discuss the possibility of using task analysis, specifically, CPM-GOMS to predict if a system design will lead to excessive workload. Finally, we present two system design strategies for maintaining a cognitive workload that is below the red-line. The first of these is an adaptive automation using eye-tracking to reduce screen clutter when it appears workload has become so high an error may occur. The second design strategy presents four research based design principles for reducing workload to acceptable levels.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3