Analysis and Design of Interface for a Bio-Inspired Underwater Vehicle (BUV): Toward an Optimized Blend of Knowledge-driven and Intuitive Control

Author:

Zhu Ruijie12,Deshpande Abhiraj12,Lockhart Marisa12,Bart-Smith Hilary12,Kim Inki12

Affiliation:

1. School of Engineering and Applied Science

2. University of Virginia, Charlottesville, Virginia

Abstract

The supervisory control of unmanned vehicles is likely to be an important form of next-generation human-machine interaction. Although the effective design of control interface is critical for high-performance human-robot teams, there is little framework beyond general design principles in the Human Factors discipline. The main challenge is to find an optimal balance between knowledge-driven control functions and intuitive maneuvers. In general, the supervisory control of unmanned vehicles requires its operator to map the vehicle’s motion parameters with the set of control functions implemented in an interface. Due to the complexity of the control functions and underlying domain-specific knowledge, it usually takes significant time and efforts to learn the mapping relationship and familiarize oneself with the interface. In this regard, intuitive control interface is an obvious virtue that can save the cost of learning the interface, as well as acceptance by a larger group of users. With increasing types and numbers of unmanned vehicles/robots, a lack of intuitiveness can bring about substantial usability issues, including the cost of learning how to control a new vehicle, and the cost of switching to different types of vehicles. Despite the needs, the notion of intuitive control has little theoretical foundation, thus, difficult to implement through design practices. It is the ultimate goal of the current research to generate design principles that balance between knowledge-driven control and intuitive control by establishing an analytic framework of cognitive task monitoring. The analytic framework intends to estimate the cognitive processing underlying a sequence of control actions, thereby, provides empirical evidence of intuitiveness versus knowledge-dependency in control. The current research uses a Bio-inspired Underwater Vehicles (BUV) to apply the analytic framework under a variety of operational scenarios to monitor the operator interaction. To evaluate the degree of intuitiveness versus knowledge-dependency, the existent interface built in LabVIEW (Ver. 2017, National Instruments, Corp., Austin, TX) is being tested on a group of experts and novices under a variety of task scenarios. As a result, the current interface is evaluated regarding the cost of learning, i.e. the degree of reliance on knowledge, and the cost of switching to different control functions, i.e. the degree of counter-intuitiveness. Finally, the analytic outcomes lead to the redesign of the interface.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3