Static and Adaptable Automation in Simulated Submarine Track Management

Author:

Chen Stephanie1,Loft Shayne1,Huf Sam2,Braithwaite Janelle1,Visser Troy1

Affiliation:

1. The University of Western Australia

2. Maritime Operations Division, Defence Science and Technology Organisation

Abstract

Automation that supports lower order information processing levels can potentially reduce the loss of situation awareness associated with static automation, but remains to be tested. Adaptable automation has promised the benefits of adaptive automation without the associated reorienting costs. In the current study, 38 participants completed a simulated submarine track management task with varying taskload under conditions of no automation, static automation, and adaptable automation (where participants decided when to use automation). Static automation reduced workload and improved performance with no cost to situation awareness (compared to no automation). This suggests that low levels of static automation can support performance under varying taskload, however a stronger test of situation awareness is recommended for future studies. Adaptable automation was used during periods of high taskload but was not utilized fully by participants. Adaptable automation maintained situation awareness and lowered workload but provided minimal performance improvements (compared to no automation).

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3