Experimental study on the insertion loss of multilayer panels featuring a periodic structure

Author:

Gulia Preeti1ORCID,Gupta Arpan1

Affiliation:

1. Acoustics and Vibration Lab, Indian Institute of Technology, Mandi, Himachal Pradesh, India

Abstract

Acoustic panels with different configurations (layered structure with different absorbing materials) are broadly used to attenuate the noise. Multiple panels are preferred due to the presence of multiple air cavities and the repeated reflections which lead to increased sound attenuation. The paper presents an experimental study of sound propagation through multiple panels. A novel design of acoustic panel is proposed by incorporating the sonic crystal in the air cavities of the panel. Sonic crystal (SC) consists of a periodic arrangement of sound hard scatterers which provide the sound reduction in a particular frequency range due to destructive interference in periodic scatterers. The results are based on experimental observations which are supported by the literature. The results show that increasing the number of panels increases the sound insertion loss from the multiple panel structure. However, the panels with air cavity suffer from the sound insertion loss dip, which makes the panel ineffective. The novel acoustic panel (double and triple panel with SC) provides an additional sound reduction due to SC which can be tailored for certain frequency band. For the present case, SC is designed to overcome the insertion loss dip. The novel panel provides an additional insertion loss, reaching a maximum value of 19 and 11 dB, respectively (for the double and triple panel), overcoming the insertion loss dip due to structural vibration.

Funder

Science and Engineering Research Board

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3