Affiliation:
1. University of Massachusetts Medical School, Worcester, MA, USA
2. Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
Abstract
Background Complex machine learning (ML) models have revolutionized predictions in clinical care. However, for laparoscopic colectomy (LC), prediction of morbidity by ML has not been adequately analyzed nor compared against traditional logistic regression (LR) models. Methods All LC patients, between 2017 and 2019, in the National Surgical Quality Improvement Program (NSQIP) were identified. A composite outcome of 17 variables defined any post-operative morbidity. Seven of the most common complications were additionally analyzed. Three ML models (Random Forests, XGBoost, and L1-L2-RFE) were compared with LR. Results Random Forests, XGBoost, and L1-L2-RFE predicted 30-day post-operative morbidity with average area under the curve (AUC): .709, .712, and .712, respectively. LR predicted morbidity with AUC = .712. Septic shock was predicted with AUC ≤ .9, by ML and LR. Conclusion There was negligible difference in the predictive ability of ML and LR in post-LC morbidity prediction. Possibly, the computational power of ML cannot be realized in limited datasets.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献