An Open Source Replication of a Winning Recidivism Prediction Model

Author:

Circo Giovanni M.1,Wheeler Andrew P.12ORCID

Affiliation:

1. University of New Haven, West Haven, CT, USA

2. Georgia State University, Atlanta, USA

Abstract

We present results of our winning solution to the National Institute of Justice recidivism forecasting challenge. Our team, “MCHawks,” placed highly in both terms of accuracy (as measured via the Brier score), as well as the fairness criteria (weighted by differences in false positive rates between White and Black parolees). We used a non-linear machine learning model, XGBoost, although we detail our search of different model specifications, as many different models’ predictive performance is very similar. Our solution to balancing false positive rates is trivial; we bias predictions to always be “low risk” so false positive rates for each racial group are zero. We discuss changes to the fairness metric to promote non-trivial solutions. By providing open-source replication materials, it is within the capabilities of others to build just as accurate models without extensive statistical expertise or computational resources.

Publisher

SAGE Publications

Subject

Applied Psychology,Arts and Humanities (miscellaneous),Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3