Establishing a Classification System for Predicting Flow-Limiting Dissection After Balloon Angioplasty Using Explainable Machine-Learning Models: A Multicenter Retrospective Cohort Study

Author:

Hou Xinhuang12ORCID,Xu Shuguo3,Lin Tong4,Liu Liang4,Guo Pingfan12,Cai Fanggang12,Zhang Jinchi12,Lin Jun5,Lai Xiaoling12,Li Wanglong12,Dai Yiquan12

Affiliation:

1. Department of Vascular Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China

2. Department of Vascular Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China

3. Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, Ningde, China

4. Department of Vascular Surgery, Fuqing City Hospital of Fujian, Fuqing, China

5. Trauma Center and Emergency Surgery Department, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China

Abstract

Objective: Percutaneous transluminal angioplasty (PTA) is the primary method for treatment in peripheral arterial disease. However, some patients experience flow-limiting dissection (FLD) after PTA. We utilized machine learning and SHapley Additive exPlanations to identify and optimize a classification system to predict FLD after PTA. Methods: This was a multi-center, retrospective, cohort study. The cohort comprised 407 patients who underwent treatment of the femoropopliteal (FP) arteries in 3 institutions between January 2021 and June 2023. Preoperative computed tomography angiography images were evaluated to identify FP artery grading, chronic total occlusion (CTO), and vessel calcification (peripheral artery calcium scoring system [PACSS]). After PTA, FLD was identified by angiography. We trained and validated 6 machine-learning models to estimate FLD occurrence after PTA, and the best model was selected. Then, the sum of the Shapley values for each of CTO, FP, and PACSS was calculated for each patient to produce the CTO-FP-PACSS value. The CTO-FP-PACSS classification system was used to classify the patients into classes 1 to 4. Univariate and multivariate analyses were performed to validate the effectiveness of the CTO-FP-PACSS classification system for predicting FLD. Results: Overall, 407 patients were analyzed, comprising 189 patients with FLD and 218 patients without FLD. Differences in sex (71% males vs 54% males, p<0.001), CTO (72% vs 43%, p<0.001), FP (3.26±0.94 vs 2.66±1.06, p<0.001), and PACSS (2.39±1.40 vs 1.74±1.35, p<0.001) were observed between patients with and without FLD, respectively. The random forest model demonstrated the best performance (validation set area under the curve: 0.82). SHapley Additive exPlanations revealed CTO, PACSS, and FP as the 3 most influential FLD predictors, and the univariate and multivariate analyses confirmed CTO-FP-PACSS classification as an independent FLD predictor (multivariate hazard ratio 4.13; p<0.001). Conclusion: The CTO-FP-PACSS classification system accurately predicted FLD after PTA. This user-friendly system may guide surgical decision-making, helping choose between PTA and additional devices to reduce FLD in FP artery treatment. Clinical impact We utilised machine-learning techniques in conjunction with SHapley Additive exPlanations to develop a clinical classification system that predicts the probability of flow-limiting dissection (FLD) after plain old balloon angioplasty. This classification system categorises lesions into Classes 1–4 based on three factors: chronic total occlusion, femoropopliteal grading, and peripheral artery calcium scoring. Each class demonstrated a different probability of developing FLD. This classification system may be valuable for surgeons in their clinical practice, as well as serving as a source of inspiration for other researchers.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3