Pulsatile Deformations of a Conformable Descending Thoracic Aortic Endograft in Aneurysm, Dissection, and Blunt Traumatic Aortic Injury Patients

Author:

Cheng Christopher P.1ORCID,Suh Ga-Young2ORCID,Moainie Sina L.3,Stern Jordan R.1ORCID,Szeto Wilson Y.4

Affiliation:

1. Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA, USA

2. Department of Biomedical Engineering, California State University, Long Beach, Long Beach, CA, USA

3. Department of Cardiac Surgery, St. Vincent Heart Center of Indiana, Indianapolis, IN, USA

4. Division of Cardiovascular Surgery, Penn Presbyterian Medical Center, University of Pennsylvania, Philadelphia, PA, USA

Abstract

Purpose: This study presents analytic techniques to quantify cardiac pulsatility-induced deformations of thoracic aortic endografts in patients with thoracic aortic aneurysm (TAA), dissection (TAD), and blunt thoracic aortic injury (BTAI) after thoracic endovascular aortic repair (TEVAR). Technique: We analyzed 19 image data sets from 14 patients treated for TAA, TAD, and BTAI with cardiac-gated post-TEVAR CTs. Systolic and diastolic geometric models were constructed and diametric, axial, and bending deformations were quantified. For patients with cardiac-gated pre-op scans, the damping of pulsatile diametric distension was computed. Maximum localized diametric distension was 2.4±1.0%, 4.2±1.7%, and 5.5±1.6%, and axial deformation was 0.0±0.1%, −0.1±0.3%, and 1.1±0.6% in the endografts of TAA, TAD, and BTAI cohorts, respectively. Diametric distension damping from pre- to post-TEVAR was ~50%. Diametric and bending deformations were localized at certain axial positions on the endograft, and the inner curve bends more than the centerline, especially adjacent to overlapping regions. Conclusion: The presented techniques support investigation of multi-axial endograft deformations between disease causes and geometric locations on the device. Discretized quantification of deformation is needed to define device fatigue testing conditions and predict device durability in patients. Clinical Impact This study demonstrates analytic techniques to quantify discretized deformation of thoracic endografts. Cardiac-resolved computed tomography is sometimes acquired for surgical planning and follow-up, however, the dynamic data are not typically used to quantify pulsatile deformations. Our analytic techniques extract the centerline and surface geometry of the stented thoracic aorta during the cardiac cycle, which are used to quantify diametric, axial, and bending deformations to provide better understanding of device durability and impact on the native anatomy.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3