Artificial Intelligence–Assisted Sac Diameter Assessment for Complex Endovascular Aortic Repair

Author:

Wegner Moritz1ORCID,Fontaine Vincent2,Nana Petroula2ORCID,Dieffenbach Bryan V.3,Fabre Dominique2,Haulon Stéphan2

Affiliation:

1. Department of Vascular and Endovascular Surgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany

2. Aortic Center, Marie Lannelongue Hospital, Groupe Hospitalier Paris Saint Joseph, Paris-Saclay University, Le Plessis-Robinson, France

3. Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Boston, MA, USA

Abstract

Purpose: Artificial intelligence (AI) using an automated, deep learning–based method, Augmented Radiology for Vascular Aneurysm (ARVA), has been verified as a viable aide in aneurysm morphology assessment. The aim of this study was to evaluate the accuracy of ARVA when analyzing preoperative and postoperative computed tomography angiography (CTA) in patients managed with fenestrated endovascular repair (FEVAR) for complex aortic aneurysms (cAAs). Materials and Methods: Preoperative and postoperative CTAs from 50 patients (n=100 CTAs) who underwent FEVAR for cAAs were extracted from the picture archiving and communication system (PACS) of a single aortic center equipped with ARVA. All studies underwent automated AI aneurysm morphology assessment by ARVA. Appropriate identification of the outer wall of the aorta was verified by manual review of the AI-generated overlays for each patient. Maximum outer-wall aortic diameters were measured by 2 clinicians using multiplanar reconstruction (MPR) and curved planar reformatting (CPR), and among studies where the aortic wall was appropriately identified by ARVA, they were compared with ARVA automated measurements. Results: Identification of the outer wall of the aorta was accurate in 89% of CTA studies. Among these, diameter measurements by ARVA were comparable to clinician measurements by MPR or CPR, with a median absolute difference of 2.4 mm on the preoperative CTAs and 1.6 mm on the postoperative CTAs. Of note, no significant difference was detected between clinician measurements using MPR or CPR on preoperative and postoperative scans (range 0.5–0.9 mm). Conclusion: For patients with cAAs managed with FEVAR, ARVA provides accurate preoperative and postoperative assessment of aortic diameter in 89% of studies. This technology may provide an opportunity to automate cAA morphology assessment in most cases where time-intensive, manual clinician measurements are currently required. Clinical Impact In this retrospective analysis of preoperative and postoperative imaging from 50 patients managed with FEVAR, AI provided accurate aortic diameter measurements in 89% of the CTAs reviewed, despite the complexity of the aortic anatomies, and in post-operative CTAs despite metal artifact from stent grafts, markers and embolization materials. Outliers with imprecise automated aortic overlays were easily identified by scrolling through the axial AI-generated segmentation MPR cuts of the entire aorta.This study supports the notion that such emerging AI technologies can improve efficiency of routine clinician workflows while maintaining excellent measurement accuracy when analyzing complex aortic anatomies by CTA.

Funder

Agence Nationale de la Recherche

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3