Fast Approximate Quantification of Endovascular Stent Graft Displacement Forces in the Bovine Aortic Arch Variant

Author:

Sturla Francesco12ORCID,Caimi Alessandro2,Romarowski Rodrigo M.1,Nano Giovanni34,Glauber Mattia5,Redaelli Alberto2,Votta Emiliano12,Marrocco-Trischitta Massimiliano M.36ORCID

Affiliation:

1. 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy

2. Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy

3. Vascular Surgery Unit, Cardiovascular Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy

4. Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy

5. Minimally Invasive Cardiac Surgery Unit, Istituto Clinico Sant’Ambrogio, Milano, Italy

6. Clinical Research Unit, Cardiovascular Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy

Abstract

Purpose: Displacement forces ( DFs) identify hostile landing zones for stent graft deployment in thoracic endovascular aortic repair (TEVAR). However, their use in TEVAR planning is hampered by the need for time-expensive computational fluid dynamics (CFD). We propose a novel fast-approximate computation of DFs merely exploiting aortic arch anatomy, as derived from the computed tomography (CT) and a measure of central aortic pressure. Materials and Methods: We tested the fast-approximate approach against CFD gold-standard in 34 subjects with the “bovine” aortic arch variant. For each dataset, a 3-dimensional (3D) model of the aortic arch lumen was reconstructed from computed tomography angiography and CFD then employed to compute DFs within the aortic proximal landing zones. To quantify fast-approximate DFs, the wall shear stress contribution to the DF was neglected and blood pressure space-distribution was averaged on the entire aortic wall to reliably approximate the patient-specific central blood pressure. Also, DF values were normalized on the corresponding proximal landing zone area to obtain the equivalent surface traction ( EST). Results: Fast-approximate approach consistently reflected (r2=0.99, p<0.0001) the DF pattern obtained by CFD, with a −1.1% and 0.7° bias in DFs magnitude and orientation, respectively. The normalized EST progressively increased (p<0.0001) from zone 0 to zone 3 regardless of the type of arch, with proximal landing zone 3 showing significantly greater forces than zone 2 (p<0.0001). Upon DF normalization to the corresponding aortic surface, fast-approximate EST was decoupled in blood pressure and a dimensionless shape vector (S) reflecting aortic arch morphology. S showed a zone-specific pattern of orientation and proved a valid biomechanical blueprint of DF impact on the thoracic aortic wall. Conclusion: Requiring only a few seconds and quantifying clinically relevant biomechanical parameters of proximal landing zones for arch TEVAR, our method suits the real preoperative decision-making process. It paves the way toward analyzing large population of patients and hence to define threshold values for a future patient-specific preoperative TEVAR planning.

Funder

Italian Ministry of Health

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3