Hemodynamic Study of Stanford Type B Aortic Dissection Based on Ex Vivo Porcine Aorta Models

Author:

Liang Shichao1,Jia Heyue2,Dong Huiwu3,Li Zhenfeng1,Zhou Guojing1,Zhang Xuehuan1,Chen Duanduan1ORCID,Xiong Jiang2ORCID

Affiliation:

1. School of Life Science, Beijing Institute of Technology, Beijing, China

2. Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China

3. Department of Ultrasound Diagnosis, Chinese PLA General Hospital, Beijing, China

Abstract

Background: In this study, we aimed to evaluate hemodynamic influence of the dissected aortic system via various ex vivo type B aortic dissection (AD) models. Methods: Twenty-four raw porcine aortas were harvested and randomly divided into 4 groups to create various aortic models. Model A was the control group, while models B to D indicated the AD group, where models B and C presented a proximal primary entry with the false lumen (FL) lengths of 15 and 20 cm, respectively, and model D presented a 20 cm FL with a proximal primary entry and a distal reentry. All the aortic models were connected to a mock circulation loop to attain the realistic flow and pressure status. The flow distribution rate (FDR) of the aortic branches was calculated. Doppler ultrasound was applied to visualize the AD structure and to attain the velocity of flow in both the true and false lumens. Several sections of the AD were stained with hematoxylin and eosin for histologic evaluation after the experiment. Results: This study demonstrated that higher pressures were found for the AD group compared with the control group. The mean systolic pressures at the inlet of models A to D were 113.34±0.81, 120.58±0.52, 117.76±0.82, and 115.87±0.42 mm Hg, respectively. The FDRs of the celiac artery in models A to D were 8.65%, 8.32%±0.15%, 7.87%±0.13%, and 8.03%±0.21%, respectively. By ultrasound visualization, the velocity of the flow at the entry to the FL in the AD group ranged in 10 to 92 cm/s. The dissection flap presented pulsatile movement, especially in the models B and C which contained 1 primary entry without distal reentries. Histological examinations indicated that AD was located between the intimal and medial layers. Conclusions: Our ex vivo models demonstrated that the configuration of the dissected aorta influenced the pressure distribution. Moreover, the dissection flap affected the FDR of the aortic branches that possibly inducing malperfusion syndrome.

Funder

natural science foundation of beijing municipality

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Beijing Municipal Science and Technology Project

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3