The Influence of Positioning of the Nellix Endovascular Aneurysm Sealing System on Suprarenal and Renal Flow: An In Vitro Study

Author:

Boersen Johannes T.12,Groot Jebbink Erik13,Van de Velde Lennart1,Versluis Michel34,Lajoinie Guillaume3,Slump Cornelius H.4,de Vries Jean-Paul P. M.2,Reijnen Michel M. P. J.1

Affiliation:

1. Department of Surgery, Rijnstate Hospital, Arnhem, the Netherlands

2. Department of Vascular Surgery, St Antonius Hospital, Nieuwegein, the Netherlands

3. Department of Physics of Fluids, Faculty of Science and Technology, Technical University of Twente, Enschede, the Netherlands

4. MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands

Abstract

Purpose: To examine the influence of device positioning and infrarenal neck diameter on flow patterns in the Nellix endovascular aneurysm sealing (EVAS) system. Methods: The transition of the aortic flow lumen into two 10-mm-diameter stents after EVAS creates a mismatched area. Flow recirculation may affect local wall shear stress (WSS) profiles and residence time associated with atherosclerosis and thrombosis. To examine these issues, 7 abdominal aortic aneurysm flow phantoms were created, including 3 unstented controls and 3 stented models with infrarenal neck diameters of 24, 28, and 32 mm. Stents were positioned within the instructions for use (IFU). Another 28-mm model was created to evaluate lower positioning of the stents outside the IFU (28-mm LP). Flow was visualized using optical particle imaging velocimetry (PIV) and quantified by time-averaged WSS (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) in the aorta at the anteroposterior (AP) midplane, lateral midplane, and renal artery AP midplane levels. Results: Flow in the aorta AP midplane was similar in all models. Vortices were observed in the stented models in the lateral midplane near the anterior and posterior walls. In the 32-mm IFU and 28-mm LP models, a steady state of vortices appeared, with varying location during a cycle. In all models, a low TAWSS (<10−2 Pa) was observed at the anterior wall of the aorta with peak OSI of 0.5 and peak RRT of 104 Pa−1. This region was more proximally located in the stented models. The 24- and 28-mm IFU models showed flow with a higher velocity at the renal artery inflow compared to controls. TAWSS in the renal artery was lower near the orifice in all models, with the largest area in the 24-mm IFU model. OSI and RRT in the renal artery were near zero for all models. Conclusion: EVAS enhances vorticity proximal to the seal zone, especially with lower positioning of the device and in larger neck diameters. Endobags just below the renal artery affect the flow profile in a minor area of this artery in 24- and 28-mm necks, while lower stent positioning does not influence the renal artery flow profile.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,Surgery

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3