Bio-hybrid foams by silsesquioxanes cross-linked thermoplastic zein films

Author:

Verdolotti Letizia1,Oliviero Maria1,Lavorgna Marino1,Iozzino Valentina1,Larobina Domenico1,Iannace Salvatore1

Affiliation:

1. Institute for Composite and Biomedical Materials, National Research Council, Granatello, Portici (NA), Italy

Abstract

Hybrid materials, a new class of materials obtained by sol-gel approach and based on the nanoscale interaction between inorganic and organic phases, have recently gained large scientific and industrial attention. In this work, the material designing of zein hybrid materials with tailored properties is addressed to the production of zein hybrid foams by both gas foaming and supercritical carbon dioxide, CO2 drying. Hybrid materials have been produced from thermoplastic zein and 3-glycidoxypropyltrimethoxysilane by a two-step procedure including reactive melt mixing and a simultaneous sol-gel approach. Protein structural changes have been investigated by infrared spectroscopy and correlated with thermomechanical properties. The hybrid foams have been analyzed by scanning electron microscopy in order to evaluate the effect of silsesquioxanes domains on the porous structure. Hybrid microcellular foams with homogeneous cellular structures have been obtained by both foaming approaches. A bimodal structure with bubbles characterized by micrometric and nanometric sizes was obtained in hybrid foams obtained with CO2 drying.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3