Foaming and thermal characteristics of bio-based polylactic acid–thermoplastic polyurethane blends

Author:

Barmouz Mohsen1,Hossein Behravesh Amir1

Affiliation:

1. Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

This paper reports a research work on characterization of foamed biocompatible polylactic acid–thermoplastic polyurethane blends in terms of microstructural, thermal, and physical properties. The brittleness of the polylactic acid is compensated via blending with an elastoplastic phase of thermoplastic polyurethane. A range of low bulk density foam with a high cell density was produced in a solid state foaming process. Addition of thermoplastic polyurethane phase acted against the cell growth and thus foam expansion, apparently due to its inherent lower storage modulus, which weakens the polymer matrix and leads to gas escape phenomenon. Evaluation of thermal properties showed a tangible effect of blending and foaming process on crystallization of the specimens, which confirmed that the sensitivity of polylactic acid’s crystallinity to CO2 gas saturation was reduced as a result of thermoplastic polyurethane addition. Measurement of cell diameters and cell densities of the foamed samples demonstrated formation of the fine closed cells structure as a result of suitable foaming parameters that were able to deal with stiffness and strength of the polymeric matrix.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3