Morphological, thermo-mechanical, and thermal conductivity properties of halloysite nanotube-filled polypropylene nanocomposite foam

Author:

Demori Renan1,Bischoff Eveline1,de Azeredo Ana P2,Liberman Susana A1,Maia Joao3,Mauler Raquel S1

Affiliation:

1. Chemistry Institute, Federal University of Rio Grande do Sul (UFRGS), Brazil

2. Braskem S/A, III Pólo Petroquímico, Triunfo, Brazil

3. Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA

Abstract

Studies about polypropylene nanocomposite foams are receiving attention because nanoparticles can change physical and mechanical properties, as well as improve foaming behavior in terms of homogeneous cell structure, cell density, and void fraction. In this research, the foaming behavior of polypropylene, polypropylene/long-chain branched polypropylene (LCBPP) 100/20 blend, and polypropylene/LCBPP/halloysite nanocomposites with 0.5 and 3 parts per hundred of resin (phr) is studied. The LCBPP was used to improve the rheological properties of polypropylene/LCBPP blend, namely the degree of strain-hardening. Transmission electron microscopy observation indicated that halloysite nanotube particles are well distributed in the matrix by aggregates. Subsequent foaming experiments were conducted using chemical blowing agent in injection-molding processing. Polypropylene foam exhibited high cell density and cell size as well as a collapsing effect, whereas the polypropylene/LCBPP blend showed a reduction of the void fraction and cell density compared to expanded polypropylene. Also, the blend showed reduction of the collapsing effect and increase of homogeneous cell size distribution. The introduction of a small amount of halloysite nanotube in the polypropylene/LCBPP blend improved the foaming behavior of the polypropylene, with a uniform cell structure distribution in the resultant foams. In addition, the cell density of the composite sample was higher than the polypropylene/LCBPP sample, having increased 82% and 136% for 0.5 and 3 phr of loaded halloysite nanotube, respectively. Furthermore, the presence of halloysite nanotube increased crystallization temperature (Tc) and slightly increased dynamic-mechanical properties measured by dynamic-mechanical thermal analysis. By increasing halloysite nanotube content to 3 phr, the insulating effect increased by 13% compared to polypropylene/LCBPP blend. For comparative purposes, the effect on foaming behavior of polypropylene/LCBPP was also investigated using talc microparticles.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3