Affiliation:
1. Center for Nanocomposites & Multifunctional Materials (CNCMM) Professor Pittsburg State University, Pittsburg, KS 66762,
2. Department of Mechanical & Industrial Engineering, Mercer University, GA
Abstract
This article presents a brief but concise review of the current research efforts on polymeric nanocomposite foams production, characterization, and applications. Survey indicates that the emergence of nanocomposites has resulted in the development of a new group of materials regarded as nanocomposite foams. Nanocomposites result from the use of nano-sized (10-09 m) particles as fillers to modify and enhance the properties of polymers and other matrices. The combination of functional nanoparticles and foaming technologies such as supercritical fluid foaming, chemical foaming, syntactic foaming, aerogel foaming, phase inversion foaming etc. generate these new materials regarded as nanocomposite foams that have light weight, high specific strength, and multifunctional attributes. Enhanced thermo-mechanical properties of nanocomposite foams result from improved cell morphology that is mainly attributable to the role of nanoparticles as nucleation agents for bubble generation. High-specific mechanical properties and multifunctional characteristics of nanocomposite foams make them cost-effective and desirable in a multitude of application areas including structural, energy-dissipating/absorbing, acoustical insulation, flammability resistance, and others. Of particular importance in this study of nanocomposite foams is the flammability resistance effect of nanoparticles. The intumescent model (NIST, NMAB, and others) indicates that the flame barrier mechanism involves a high-performance carbonaceous-silicate char; this char build-up insulates the underlying material. Understanding this char build-up mechanism presents a challenge and area of research interest in the effort to develop new generation foams that are suitable in energy absorbing materials and structures.
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献