Affiliation:
1. Composite Materials and Mechanics Laboratory, Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
Abstract
Syntactic foams are commonly fabricated with sodalime–borosilicate glass hollow microsphere fillers, which are susceptible to degradation after long-term or high temperature moisture exposure. In comparison, borosilicate glass hollow particles offer higher degradation resistance to moisture, lower thermal expansion, and higher softening temperature. This work explores borosilicate glass hollow microspheres for use as fillers in syntactic foams and studies their thermophysical properties. The coefficient of thermal expansion over the temperature range 35–90℃ was observed to decrease from 62.4 μ/K for the matrix resin to a minimum of 24.3 μ/K for syntactic foams, representing higher thermophysical stability of syntactic foams. Theoretical models are used to conduct parametric studies and understand the correlation between material parameters and coefficient of thermal expansion of syntactic foams. The dynamic mechanical analysis results show that the storage modulus of syntactic foams increases with increasing glass hollow microsphere wall thickness and with decreasing glass hollow microsphere volume fraction in the glassy region at 40℃. The β-relaxation of the matrix resin found at 66.1 ± 2.0℃ was suppressed in the majority of syntactic foams, further improving the stability around typical application temperatures.
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献