Investigation of crystallization behavior of solid and microcellular injection molded polypropylene/nano-calcium carbonate composites using carbon dioxide as a blowing agent

Author:

Chen Jie1,Sun Xiaofei2,Turng Lih-Sheng2,Zhao Ling1,Liu Tao1,Yuan Wei-Kang1

Affiliation:

1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China

2. Wisconsin Institute for Discovery and Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI, USA

Abstract

This work is aimed at investigating the crystallization behavior of solid and microcellular injection molded polypropylene/nano-calcium carbonate composites. The effects of processing conditions, such as injection speed, mold temperature, and carbon dioxide concentration (used in microcellular injection molding), as well as the filler concentration on the crystal form, crystal orientation, and crystallinity were studied using 2D-wide-angle X-ray diffraction and differential scanning calorimetry. β-form crystals found in the surface layer of injection molded samples under high injection and mold temperature due to stronger shear effect. The orientation degree calculated from the X-ray diffraction images by the Hermans function was high in the surface layer and decreased as the distance from the mold surface increased. The addition of the nano-calcium carbonate filler promoted the formation of β-form crystals but reduced the orientation degree and crystallinity as the nanoparticles disturbed the orientation of the molecular chains. On the other hand, when using the foaming process, the formation of β-form crystals was inhibited and the orientation degree was reduced, but the crystallinity of the samples increased, likely due to enhanced molecular chain mobility from the supercritical carbon dioxide which acted as a plasticizer. The crystallinity of the samples was greater in the surface layer but showed no dependence on the injection speed or mold temperature.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3